Quantitative Economics
Journal Of The Econometric Society
Edited by: Stéphane Bonhomme • Print ISSN: 1759-7323 • Online ISSN: 1759-7331
Edited by: Stéphane Bonhomme • Print ISSN: 1759-7323 • Online ISSN: 1759-7331
August 15, 2022
Quantitative Economics: Jul, 2021, Volume 12, Issue 3
Shakeeb Khan, Fu Ouyang, Elie Tamer
We explore inference on regression coefficients in semiparametric multinomial response models. We consider cross‐sectional, and both static and dynamic panel settings where we focus throughout on inference under sufficient conditions for point identification. The approach to identification uses a matching insight throughout all three models coupled with variation in regressors: with cross‐section data, we match across individuals while with panel data, we match within individuals over time. Across models, we relax the Indpendence of Irrelevant Alternatives (or IIA assumption, see McFadden (1974)) and allow for arbitrary correlation in the unobservables that determine utility of various alternatives. For the cross‐sectional model, estimation is based on a localized rank objective function, analogous to that used in Abrevaya, Hausman, and Khan (2010), and presents a generalization of existing approaches. In panel data settings, rates of convergence are shown to exhibit a curse of dimensionality in the number of alternatives. The results for the dynamic panel data model generalize the work of Honoré and Kyriazidou (2000) to cover the semiparametric multinomial case. A simulation study establishes adequate finite sample properties of our new procedures. We apply our estimators to a scanner panel data set.
Multinomial response rank estimation dynamic panel data C14 C23 C35