Quantitative Economics

Journal Of The Econometric Society

Edited by: Stéphane Bonhomme • Print ISSN: 1759-7323 • Online ISSN: 1759-7331

Quantitative Economics: Mar, 2014, Volume 5, Issue 1

Partial identification of finite mixtures in econometric models

Marc Henry, Yuichi Kitamura, Bernard Salanié

We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J1)-dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J=2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes. Keywords. Partial identification, finite mixture models. JEL classification. C24.


Full Content

Supplemental Material

Supplement to "Identification of finite mixtures"

Supplement to "Identification of finite mixtures"